

A205837


Numbers k for which 2 divides s(k)s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)st Fibonacci number.


4



3, 4, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For a guide to related sequences, see A205840.


LINKS



EXAMPLE

The first six terms match these differences:
s(3)s(1) = 31 = 2
s(4)s(1) = 51 = 4
s(4)s(3) = 53 = 2
s(5)s(2) = 82 = 6
s(6)s(1) = 131 = 12
s(6)s(3) = 133 = 10


MATHEMATICA

s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60;
f[n_] := f[n] = Floor[(1 + Sqrt[8 n  7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k]  s[j], {k, 2, z1}, {j, 1, k  1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]]  1])/2]
j[n_] := j[n] = t[[n]]  f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205837 *)
Table[j[n], {n, 1, z2}] (* A205838 *)
Table[s[k[n]]  s[j[n]], {n, 1, z2}](* A205839 *)
Table[(s[k[n]]  s[j[n]])/c, {n, 1, z2}](* A205840 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



