|
|
A205558
|
|
(A204898)/2 = (prime(k)-prime(j))/2; A086802 without its zeros.
|
|
58
|
|
|
1, 2, 1, 4, 3, 2, 5, 4, 3, 1, 7, 6, 5, 3, 2, 8, 7, 6, 4, 3, 1, 10, 9, 8, 6, 5, 3, 2, 13, 12, 11, 9, 8, 6, 5, 3, 14, 13, 12, 10, 9, 7, 6, 4, 1, 17, 16, 15, 13, 12, 10, 9, 7, 4, 3, 19, 18, 17, 15, 14, 12, 11, 9, 6, 5, 2, 20, 19, 18, 16, 15, 13, 12, 10, 7, 6, 3, 1, 22, 21
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Let p(n) denote the n-th prime. If c is a positive integer, there are infinitely many pairs (k,j) such that c divides p(k)-p(j). The set of differences p(k)-p(j) is ordered as a sequence at A204890. Guide to related sequences:
c....k..........j..........p(k)-p(j).[p(k)-p(j)]/c
2....A133196....A131818....A204898....A205558
3....A205560....A205547....A205557....A205675
4....A205677....A205678....A205681....A205682
5....A205684....A205685....A205688....A205689
6....A205691....A205692....A205695....A205696
7....A205698....A205699....A205702....A205703
8....A205705....A205706....A205709....A205710
9....A205712....A205713....A205716....A205717
10...A205720....A205721....A205724....A205725
It appears that, as rectangular array, this sequence can be described by A(n,k) is the least m such that there are k primes in the set prime(n) + 2*i for {i=1..n}. - Michel Marcus, Mar 29 2023
|
|
LINKS
|
Table of n, a(n) for n=1..80.
|
|
EXAMPLE
|
Writing prime(k) as p(k),
p(3)-p(2)=5-3=2
p(4)-p(2)=7-3=4
p(4)-p(3)=7-5=2
p(5)-p(2)=11-3=8
p(5)-p(3)=11-5=6
p(5)-p(4)=11-7=4,
so that the first 6 terms of A205558 are 1,2,1,4,3,2.
The sequence can be regarded as a rectangular array in which row n is given by [prime(n+2+k)-prime(n+1)]/2; a northwest corner follows:
1...2...4...5...7...8....10...13...14...17...19...20
1...3...4...6...7...9....12...13...16...18...19...21
2...3...5...6...8...11...12...15...17...18...20...23
1...3...4...6...9...10...13...15...16...18...21...24
2...3...5...8...9...12...14...15...17...20...23...24
1...3...6...7...10..12...13...15...18...21...22...25
2...5...6...9...11..12...14...17...20...21...24...26
- Clark Kimberling, Sep 29 2013
|
|
MATHEMATICA
|
s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}] (* A000040 *)
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204890 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 2; t = d[c] (* A080036 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A133196 *)
Table[j[n], {n, 1, z2}] (* A131818 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204898 *)
Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205558 *)
|
|
CROSSREFS
|
Cf. A205675, A205560, A204892.
Sequence in context: A087850 A087849 A075015 * A082494 A194187 A174375
Adjacent sequences: A205555 A205556 A205557 * A205559 A205560 A205561
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Clark Kimberling, Jan 30 2012
|
|
STATUS
|
approved
|
|
|
|