

A174375


a(n) = n^2  XOR(n^2, n).


3



0, 1, 2, 1, 4, 3, 2, 5, 8, 7, 10, 7, 12, 5, 6, 13, 16, 15, 18, 17, 12, 13, 14, 11, 24, 9, 26, 23, 4, 11, 22, 29, 32, 31, 34, 33, 36, 35, 34, 27, 40, 39, 22, 39, 44, 37, 38, 19, 48, 17, 50, 15, 20, 45, 18, 21, 56, 41, 6, 9, 28
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Plotting the points of a(n) versus n up to a power of 2 approximates a Sierpinski gasket.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..8192


FORMULA

a(n) = n^2  XOR(n^2, n), where XOR is bitwise.


MATHEMATICA

Table[n^2BitXor[n^2, n], {n, 0, 60}] (* Harvey P. Dale, Jun 30 2011 *)


PROG

(Haskell)
a174375 n = n ^ 2  a169810 n  Reinhard Zumkeller, Dec 27 2012
(PARI) a(n)=n^2  bitxor(n^2, n) \\ Charles R Greathouse IV, Sep 27 2016


CROSSREFS

Cf. A169810.
Sequence in context: A205558 A082494 A194187 * A110663 A294317 A064277
Adjacent sequences: A174372 A174373 A174374 * A174376 A174377 A174378


KEYWORD

sign,nice,look


AUTHOR

Carl R. White, Mar 17 2010


STATUS

approved



