login
A377802
Triangle read by rows: T(n, k) = (2 * (n+1)^2 + 7 - (-1)^n) / 8 - k.
2
1, 2, 1, 4, 3, 2, 6, 5, 4, 3, 9, 8, 7, 6, 5, 12, 11, 10, 9, 8, 7, 16, 15, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 14, 13, 25, 24, 23, 22, 21, 20, 19, 18, 17, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31
OFFSET
1,2
COMMENTS
The natural numbers, based on quarter-squares (A002620 and A033638); every natural number occurs exactly twice.
FORMULA
T(n, k) = A002620(n+1) + 1 - k.
T(2*n-1, n) = n^2 - n + 1 = A002061(n); T(2*n-2, n) = (n-1)^2 = A000290(n-1) for n > 1; T(2*n-3, n) = (n-1) * (n-2) = A002378(n-2) for n > 2; T(2*n-4, n) = (n-1) * (n-3) = A005563(n-3) for n > 3.
Row sums are (2 * n^3 + 5 * n - n * (-1)^n) / 8 = (A006003(n) + A026741(n)) / 2.
G.f.: x*y*(1 - x*y + x^2*y + x^4*y^2 - x^5*y^3 + x^6*y^3 - x^3*y*(1 + 2*y - y^2))/((1 - x)^3*(1 + x)*(1 - x*y)^3*(1 + x*y)). - Stefano Spezia, Nov 08 2024
EXAMPLE
Triangle T(n, k) for 1 <= k <= n starts:
n\ k : 1 2 3 4 5 6 7 8 9 10 11 12 13
==========================================================
1 : 1
2 : 2 1
3 : 4 3 2
4 : 6 5 4 3
5 : 9 8 7 6 5
6 : 12 11 10 9 8 7
7 : 16 15 14 13 12 11 10
8 : 20 19 18 17 16 15 14 13
9 : 25 24 23 22 21 20 19 18 17
10 : 30 29 28 27 26 25 24 23 22 21
11 : 36 35 34 33 32 31 30 29 28 27 26
12 : 42 41 40 39 38 37 36 35 34 33 32 31
13 : 49 48 47 46 45 44 43 42 41 40 39 38 37
etc.
PROG
(PARI) T(n, k)=(2*(n+1)^2+7-(-1)^n)/8-k
CROSSREFS
A002620 (column 1), A024206 (column 2), A014616 (column 3), A004116 (column 4), A033638 (main diagonal), A290743 (1st subdiagonal).
Sequence in context: A174375 A110663 A294317 * A064277 A287010 A144330
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Nov 07 2024
STATUS
approved