login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205698 Numbers k for which 7 divides prime(k)-prime(j) for some j<k; each k occurs once for each such j. 8
7, 8, 9, 11, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
For a guide to related sequences, see A205558.
LINKS
EXAMPLE
The first six terms match these differences:
p(7)-p(2)=17-3=14=7*2
p(8)-p(3)=19-5=14=7*2
p(9)-p(1)=23-2=21=7*3
p(11)-p(2)=31-3=28=7*4
p(11)-p(7)=31-17=14=7*2
p(12)-p(1)=37-2=35=7*5
MATHEMATICA
s[n_] := s[n] = Prime[n]; z1 = 1200; z2 = 80;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}] (* A000040 *)
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204890 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 7; t = d[c] (* A205697 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205698 *)
Table[j[n], {n, 1, z2}] (* A205699 *)
Table[s[k[n]], {n, 1, z2}] (* A205700 *)
Table[s[j[n]], {n, 1, z2}] (* A205701 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205702 *)
Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205703 *)
CROSSREFS
Sequence in context: A106108 A120309 A035705 * A210147 A340741 A097338
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 31 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 06:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)