login
A204922
Ordered differences of Fibonacci numbers.
32
1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 12, 11, 10, 8, 5, 20, 19, 18, 16, 13, 8, 33, 32, 31, 29, 26, 21, 13, 54, 53, 52, 50, 47, 42, 34, 21, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 231, 230, 228, 225, 220, 212, 199, 178
OFFSET
1,2
COMMENTS
For a guide to related sequences, see A204892. For numbers not in A204922, see A050939.
From Emanuele Munarini, Mar 29 2012: (Start)
Diagonal elements = Fibonacci numbers F(n+1) (A000045)
First column = Fibonacci numbers - 1 (A000071);
Second column = Fibonacci numbers - 2 (A001911);
Row sums = n*F(n+3) - F(n+2) + 2 (A014286);
Central coefficients = F(2*n+1) - F(n+1) (A096140).
(End)
FORMULA
From Emanuele Munarini, Mar 29 2012: (Start)
T(n,k) = Fibonacci(n+2) - Fibonacci(k+1).
T(n,k) = Sum_{i=k..n} Fibonacci(i+1). (End)
EXAMPLE
a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045;
a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2;
a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1;
a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4.
From Emanuele Munarini, Mar 29 2012: (Start)
Triangle begins:
1;
2, 1;
4, 3, 2;
7, 6, 5, 3;
12, 11, 10, 8, 5;
20, 19, 18, 16, 13, 8;
33, 32, 31, 29, 26, 21, 13;
54, 53, 52, 50, 47, 42, 34, 21;
88, 87, 86, 84, 81, 76, 68, 55, 34;
... (End)
MATHEMATICA
(See the program at A204924.)
PROG
(Maxima) create_list(fib(n+3)-fib(k+2), n, 0, 20, k, 0, n); /* Emanuele Munarini */
(Magma) /* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
(PARI) {T(n, k) = fibonacci(n+2) - fibonacci(k+1)};
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 03 2019
(Sage) [[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019
CROSSREFS
Sequence in context: A287010 A144330 A141155 * A057669 A243610 A182013
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 21 2012
STATUS
approved