OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Rows n=1..100 of triangle, flattened
FORMULA
From Emanuele Munarini, Mar 29 2012: (Start)
T(n,k) = Fibonacci(n+2) - Fibonacci(k+1).
T(n,k) = Sum_{i=k..n} Fibonacci(i+1). (End)
EXAMPLE
a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045;
a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2;
a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1;
a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4.
From Emanuele Munarini, Mar 29 2012: (Start)
Triangle begins:
1;
2, 1;
4, 3, 2;
7, 6, 5, 3;
12, 11, 10, 8, 5;
20, 19, 18, 16, 13, 8;
33, 32, 31, 29, 26, 21, 13;
54, 53, 52, 50, 47, 42, 34, 21;
88, 87, 86, 84, 81, 76, 68, 55, 34;
... (End)
MATHEMATICA
(See the program at A204924.)
PROG
(Maxima) create_list(fib(n+3)-fib(k+2), n, 0, 20, k, 0, n); /* Emanuele Munarini */
(Magma) /* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
(PARI) {T(n, k) = fibonacci(n+2) - fibonacci(k+1)};
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 03 2019
(Sage) [[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 21 2012
STATUS
approved