login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324250
Sequence a(n) = 3*A002559(n) - 2 determining the principal reduced indefinite binary quadratic form [1, a(n), -a(n)] for Markoff triples.
3
1, 4, 13, 37, 85, 100, 265, 505, 580, 697, 1297, 1828, 2953, 3973, 4789, 8689, 12541, 17221, 19396, 22681, 27229, 32836, 44101, 85969, 100381, 112996, 129781, 154921, 186628, 225073, 289669, 405409, 585073, 589252, 884053, 1279165, 1498177, 1542685, 1938052, 2777293, 3410065, 3836452, 4038805
OFFSET
1,2
COMMENTS
The indefinite binary quadratic form F(n,x,y) = x^2 - 3*m(n)*x*y + y^2 = [1, -3*m(n), 1] representing -m(n)^2 with m(n) = A002559(n), determines Markoff triples MT(n) = (x(n) = A305313(n), y(n) = A305314(n), m(n)) with x(n) < y(n) < m(n), for n >= 3. For n = 1 and 2: x(n) = y(n) = 1. The Frobenius-Markoff conjecture is that this solution is unique. This form F(n,x,y) has discriminant D(n) = (3*m(n))^2 - 4 = a(n)*(a(n) + 4) = A305312(n) > 0.
Because -3*m(n) < 0 this form F(n,x,y) is not reduced (see e.g., the Buell reference, or the W. Lang link in A225953 for the definition).
The principal reduced form for F(n,x,y) is prF(n,X,Y) = X^2 + a(n)*X*Y - a(n)*Y^2 = [1, a(n), -a(n)]. (See, e.g., Lemma 2 of the W. Lang link in A225953 where b = a(n), f(D(n)) = ceiling(sqrt(D(n))) = 3*m(n), and D(n) and f(D(n)) have the same parity.) The relation between these forms is F(n,Y,Y-X) = prF(n,X,Y) with Y > 0, Y-X > 0, and X <= 0 (for n >= 3, X < 0).
REFERENCES
D. A. Buell, Binary quadratic forms, 1989, Springer, p. 21.
FORMULA
a(n) = 3*A002559(n) - 2, for n >= 1.
EXAMPLE
n = 3 with a(3) = 13: MT(3) = (1, 2, 5), F(3,x,y) = [1, -3*5, 1], prF(3,X,Y) = [1, 13, -13]. prF(3,X,Y) = -5^2 has two proper fundamental solutions with Y > 0, namely (-1, 1) and (1, 2). The unique solution with Y > 0, X < 0, and Y-X < 5 is (X, Y) = (-1, 1) corresponding to (x,y) = (1, 2) for MT(3).
The other fundamental solution (1, 2) corresponds to the unordered Markoff triple (2, 1, 5) (x > y, X > 0). The next solution in this class with X < 0 is (-12, 1) corresponding to the unordered triple (1, 13, 5) (Y-X = 13 > 5).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 04 2019
STATUS
approved