OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..2000
FORMULA
a(n) = Max_{k=1..n} Sum_{i=1..n} prime(n-i+1)*prime(1+(i+k) mod n).
a(n) >= A014342(n). Does the ratio a(n)/A014342(n) have a limit as n -> infinity? - Robert Israel, Feb 07 2018
EXAMPLE
For n = 4 the four possible cyclic convolution of first four primes with themselves are:
(2,3,5,7).(7,5,3,2) = 2*7 + 3*5 + 5*3 + 7*2 = 14 + 15 + 15 + 14 = 58,
(2,3,5,7).(2,7,5,3) = 2*2 + 3*7 + 5*5 + 7*3 = 4 + 21 + 25 + 21 = 71,
(2,3,5,7).(3,2,7,5) = 2*3 + 3*2 + 5*7 + 7*5 = 6 + 6 + 35 + 35 = 82,
(2,3,5,7).(5,3,2,7) = 2*5 + 3*3 + 5*2 + 7*7 = 10 + 9 + 10 + 49 = 78,
then a(4)=82 because 82 is the maximum among the four values.
MAPLE
f:= proc(n) local V, R, i;
V:= Vector(n, ithprime);
R:= ArrayTools:-FlipDimension(V, 1)^%T;
max(seq(ArrayTools:-CircularShift(R, i) . V, i=0..n-1))
end proc:
map(f, [$1..100]); # Robert Israel, Feb 07 2018
MATHEMATICA
a[n_]:=Prime[Range[n]];
Table[Max@Table[a[n].RotateRight[Reverse[a[n]], j], {j, 0, n - 1}], {n, 1, 36}]
PROG
(PARI) a(n) = my(vp=primes(n)); vecmax(vector(n, k, sum(i=1, n, vp[n-i+1]*vp[1+(i+k)%n]))); \\ Michel Marcus, Feb 07 2018; Jun 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Feb 02 2018
STATUS
approved