login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299111
Maximum value of the cyclic convolution of first n primes with themselves.
8
4, 13, 37, 82, 183, 344, 601, 918, 1355, 2048, 2873, 3978, 5455, 7112, 9105, 11530, 14391, 17504, 21353, 25686, 30311, 35536, 41421, 48010, 55911, 64632, 73869, 83766, 94151, 105420, 118569, 132566, 148247, 164564, 182617, 201770, 222975, 245532, 269253
OFFSET
1,1
LINKS
FORMULA
a(n) = Max_{k=1..n} Sum_{i=1..n} prime(n-i+1)*prime(1+(i+k) mod n).
a(n) >= A014342(n). Does the ratio a(n)/A014342(n) have a limit as n -> infinity? - Robert Israel, Feb 07 2018
EXAMPLE
For n = 4 the four possible cyclic convolution of first four primes with themselves are:
(2,3,5,7).(7,5,3,2) = 2*7 + 3*5 + 5*3 + 7*2 = 14 + 15 + 15 + 14 = 58,
(2,3,5,7).(2,7,5,3) = 2*2 + 3*7 + 5*5 + 7*3 = 4 + 21 + 25 + 21 = 71,
(2,3,5,7).(3,2,7,5) = 2*3 + 3*2 + 5*7 + 7*5 = 6 + 6 + 35 + 35 = 82,
(2,3,5,7).(5,3,2,7) = 2*5 + 3*3 + 5*2 + 7*7 = 10 + 9 + 10 + 49 = 78,
then a(4)=82 because 82 is the maximum among the four values.
MAPLE
f:= proc(n) local V, R, i;
V:= Vector(n, ithprime);
R:= ArrayTools:-FlipDimension(V, 1)^%T;
max(seq(ArrayTools:-CircularShift(R, i) . V, i=0..n-1))
end proc:
map(f, [$1..100]); # Robert Israel, Feb 07 2018
MATHEMATICA
a[n_]:=Prime[Range[n]];
Table[Max@Table[a[n].RotateRight[Reverse[a[n]], j], {j, 0, n - 1}], {n, 1, 36}]
PROG
(PARI) a(n) = my(vp=primes(n)); vecmax(vector(n, k, sum(i=1, n, vp[n-i+1]*vp[1+(i+k)%n]))); \\ Michel Marcus, Feb 07 2018; Jun 15 2022
CROSSREFS
Sequence in context: A003727 A103082 A279111 * A324250 A226866 A048474
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Feb 02 2018
STATUS
approved