login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299110
Prime(r) for r such that prime(r) - prime(r-1) = 12 and prime(r-1) - prime(r-2) = 2.
3
211, 631, 673, 1801, 3181, 3271, 3343, 3571, 3943, 4561, 4813, 5431, 6673, 6883, 7321, 7573, 7603, 7963, 8443, 8641, 9643, 9733, 9781, 9871, 10513, 10723, 10903, 11083, 11131, 11731, 11953, 12391, 13411, 14401, 14461, 15373, 15661, 15901, 16843, 17203, 17431, 17761, 17851, 17971, 18301, 18553, 20161, 20521, 20563, 20731
OFFSET
1,1
COMMENTS
These are the primes of a056240-type 2(12,2); k=2 (see definition in A293652). prime(r-2) is the greatest prime factor of the smallest composite number whose prime divisors (with multiplicity) sum to prime(r).
Conjecture: Sequence has infinitely many terms. Note: p~2(12,2) is just one particular form of a prime of A056240-type k=2; there are others, e.g., 2(18,2), 2(18,4), 2(28,12), 2(24,10). All such prime sequences are also conjectured to produce infinitely many terms.
LINKS
FORMULA
For every prime(r) in this sequence A288814(prime(r)) = prime(r-2)*A056240(prime(r) - prime(r-2)) = prime(r-2)*A288814(prime(r) - prime(r-2)).
EXAMPLE
a(1)=211=prime(47), the first prime of type k=2. prime(46)=199 and prime(45)=197; 211-199=12 and 199-197=2.
MAPLE
N:=21000:
for X from 2 to N do
if isprime(X) then
A:=prevprime(X);
B:=prevprime(A);
a:=X-A;
b:=A-B;
if a=12 and b=2 then print(X);
end if
end if
end if
end do
# alternative:
P:= select(isprime, {seq(i, i=3..10^6, 2)}):
Q:= P intersect map(t -> t-12, P) intersect map(t -> t+2, P):
Q:= remove(t -> ormap(isprime, [seq(t+i, i=2..10, 2)]), Q):
map(t -> t+12, Q); # Robert Israel, Feb 16 2018
MATHEMATICA
Select[Partition[Prime[Range[2500]], 3, 1], Differences[#]=={2, 12}&][[All, 3]] (* Harvey P. Dale, Feb 29 2020 *)
PROG
(PARI) isok(p) = isprime(p) && (pp=precprime(p-1)) && (p-pp == 12) && (ppp=precprime(pp-1)) && (pp-ppp == 2); \\ Michel Marcus, Feb 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved