login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299053 Minimum value of the cyclic autocorrelation of first n primes. 2
4, 12, 31, 62, 133, 224, 377, 558, 865, 1304, 1805, 2462, 3337, 4280, 5389, 6726, 8449, 10264, 12663, 15294, 18061, 21200, 24961, 29166, 34173, 39508, 45017, 50870, 57141, 63788, 72299, 81234, 91365, 101732, 113327, 125166, 138355, 152348, 167179, 182862 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Maximum values of the cyclic autocorrelation of first n primes are in A024450.
If we use this definition with integers instead of primes it is obtained A088003.
LINKS
FORMULA
a(n) = Min_{k=1..n} Sum_{i=1..n} prime(i)*prime(1 + (i+k) mod n).
EXAMPLE
For n = 4 the four possible cyclic autocorrelations of first four primes are:
(2,3,5,7).(2,3,5,7) = 2*2 + 3*3 + 5*5 + 7*7 = 4 + 9 + 25 + 49 = 87,
(2,3,5,7).(7,2,3,5) = 2*7 + 3*2 + 5*3 + 7*5 = 14 + 6 + 15 + 35 = 70,
(2,3,5,7).(5,7,2,3) = 2*5 + 3*7 + 5*2 + 7*3 = 10 + 21 + 10 + 21 = 62,
(2,3,5,7).(3,5,7,2) = 2*3 + 3*5 + 5*7 + 7*2 = 6 + 15 + 35 + 14 = 70,
then a(4)=62 because 62 is the minimum among the four values.
MAPLE
a:= n-> min(seq(add(ithprime(i)*ithprime(irem(i+k, n)+1), i=1..n), k=1..n)):
seq(a(n), n=1..40); # Alois P. Heinz, Feb 06 2018
MATHEMATICA
p[n_]:=Prime[Range[n]];
Table[Table[p[n].RotateRight[p[n], j], {j, 0, n-1}]//Min, {n, 1, 36}]
PROG
(PARI) a(n) = vecmin(vector(n, k, sum(i=1, n, prime(i)*prime(1+(i+k)%n)))); \\ Michel Marcus, Feb 07 2018
CROSSREFS
Sequence in context: A074252 A297079 A074210 * A005289 A037255 A027658
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Feb 01 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 16:32 EST 2023. Contains 367680 sequences. (Running on oeis4.)