login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003727
Expansion of e.g.f. exp(x * cosh(x)).
(Formerly M3462)
10
1, 1, 1, 4, 13, 36, 181, 848, 3865, 23824, 140521, 871872, 6324517, 44942912, 344747677, 2860930816, 23853473329, 213856723200, 1996865965009, 19099352929280, 193406280000061, 2010469524579328, 21615227339380357, 242177953175506944
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = Sum_{k=1..n} (if n=k then n! otherwise (1/2)^k*Sum_{i=0..k} binomial(n,k)* binomial(k,i)*(k-2*i)^(n-k)), n>0. - Vladimir Kruchinin, Aug 22 2010
a(n) ~ exp(r*cosh(r)-n) * n^n / (r^n * sqrt(3+(r*(r^2-2)*cosh(r))/n)), where r is the root of the equation r*(cosh(r)+r*sinh(r)) = n. - Vaclav Kotesovec, Aug 05 2014
a(n)^(1/n) ~ n*exp(1/(2*LambertW(sqrt(n/2)))-1) / (2*LambertW(sqrt(n/2))). - Vaclav Kotesovec, Aug 05 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022
MATHEMATICA
CoefficientList[Series[E^(x*Cosh[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 05 2014 *)
Table[Sum[BellY[n, k, Mod[Range[n], 2] Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(Maxima) a(n):=sum(if n=k then n! else 1/2^k*sum(binomial(n, k)*binomial(k, i)*(k-2*i)^(n-k), i, 0, k), k, 1, n); /* Vladimir Kruchinin, Aug 22 2010 */
(PARI)
x='x+O('x^66);
Vec(serlaplace(exp( x * cosh(x) )))
/* Joerg Arndt, Sep 14 2012 */
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*Cosh(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; \\ G. C. Greubel, Sep 09 2018
CROSSREFS
Sequence in context: A067635 A222425 A222189 * A103082 A279111 A299111
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and formatted by Olivier Gérard, Mar 15 1997
STATUS
approved