|
|
A003726
|
|
Numbers with no 3 adjacent 1's in binary expansion.
|
|
23
|
|
|
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 80, 81, 82
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Positions of zeros in A014082. Could be called "tribbinary numbers" by analogy with A003714. - John Keith, Mar 07 2022
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
Index entries for 2-automatic sequences.
|
|
FORMULA
|
There are A000073(n+3) terms of this sequence with at most n bits. In particular, a(A000073(n+3)+1) = 2^n. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=2} 1/a(n) = 9.516857810319139410424631558212354346868048230248717360943194590798113163384... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
|
|
MATHEMATICA
|
Select[Range[0, 82], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* Michael De Vlieger, Dec 23 2019 *)
|
|
PROG
|
(Haskell)
a003726 n = a003726_list !! (n - 1)
a003726_list = filter f [0..] where
f x = x < 7 || (x `mod` 8) < 7 && f (x `div` 2)
-- Reinhard Zumkeller, Jun 03 2012
(PARI) is(n)=!bitand(bitand(n, n<<1), n<<2) \\ Charles R Greathouse IV, Feb 11 2017
|
|
CROSSREFS
|
Cf. A278038 (binary), A063037, A000073, A014082 (number of 111).
Cf. A004781 (complement).
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110).
Sequence in context: A325114 A004765 A247063 * A343110 A337582 A004828
Adjacent sequences: A003723 A003724 A003725 * A003727 A003728 A003729
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|