login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003726
Numbers with no 3 adjacent 1's in binary expansion.
28
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 80, 81, 82
OFFSET
1,3
COMMENTS
Positions of zeros in A014082. Could be called "tribbinary numbers" by analogy with A003714. - John Keith, Mar 07 2022
The sequence of Tribbinary numbers can be constructed by writing out the Tribonacci representations of nonnegative integers and then evaluating the result in binary. These numbers are similar to Fibbinary numbers A003714, Fibternary numbers A003726, and Tribternary numbers A356823. The number of Tribbinary numbers less than any power of two is a Tribonacci number. We can generate Tribbinary numbers recursively: Start by adding 0 and 1 to the sequence. Then, if x is a number in the sequence add 2x, 4x+1, and 8x+3 to the sequence. The n-th Tribbinary number is even if the n-th term of the Tribonacci word is a. Respectively, the n-th Tribbinary number is of the form 4x+1 if the n-th term of the Tribonacci word is b, and the n-th Tribbinary number is of the form 8x+3 if the n-th term of the Tribonacci word is c. Every nonnegative integer can be written as the sum of two Tribbinary numbers. Every number has a Tribbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022
LINKS
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
There are A000073(n+3) terms of this sequence with at most n bits. In particular, a(A000073(n+3)+1) = 2^n. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=2} 1/a(n) = 9.516857810319139410424631558212354346868048230248717360943194590798113163384... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
MATHEMATICA
Select[Range[0, 82], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* Michael De Vlieger, Dec 23 2019 *)
PROG
(Haskell)
a003726 n = a003726_list !! (n - 1)
a003726_list = filter f [0..] where
f x = x < 7 || (x `mod` 8) < 7 && f (x `div` 2)
-- Reinhard Zumkeller, Jun 03 2012
(PARI) is(n)=!bitand(bitand(n, n<<1), n<<2) \\ Charles R Greathouse IV, Feb 11 2017
CROSSREFS
Cf. A278038 (binary), A063037, A000073, A014082 (number of 111).
Cf. A004781 (complement).
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110).
Sequence in context: A325114 A004765 A247063 * A343110 A337582 A004828
KEYWORD
nonn,base,easy
STATUS
approved