The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004746 Numbers whose binary expansion does not contain 010. 8
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 38, 39, 44, 45, 46, 47, 48, 49, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 67, 70, 71, 76, 77, 78, 79, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 102 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008. Index entries for 2-automatic sequences. FORMULA Sum_{n>=2} 1/a(n) = 7.338340181978485860731253930056466995425939377143636935044890325770833657631... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022 MATHEMATICA Select[Range[0, 110], SequenceCount[IntegerDigits[#, 2], {0, 1, 0}]==0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Oct 19 2015 *) PROG (PARI) is(n)=n=binary(n); for(i=4, #n, if(!n[i]&&n[i-1]&&!n[i-2], return(0))); 1 \\ Charles R Greathouse IV, Mar 29 2013 (PARI) is(n)=while(n>9, if(bitand(n, 7)==2, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017 (Haskell) a004746 n = a004746_list !! (n-1) a004746_list = filter f [0..] where f x = x < 4 || x `mod` 8 /= 2 && f (x `div` 2) -- Reinhard Zumkeller, Jul 01 2013 CROSSREFS Cf. A007088; A003796 (no 000), A004745 (no 001), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111). Sequence in context: A083114 A129350 A368365 * A188301 A332110 A178160 Adjacent sequences: A004743 A004744 A004745 * A004747 A004748 A004749 KEYWORD nonn,base,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 10:54 EDT 2024. Contains 372938 sequences. (Running on oeis4.)