|
COMMENTS
|
Theorem (J.-P. Allouche, J. Shallit, G. Skordev): This sequence = A052499 - 1.
Ahnentafel numbers of ancestors contributing the X-chromosome to a female. A280873 gives the male inheritance. - Floris Strijbos, Jan 09 2017 [Equivalence with this sequence pointed out by John Blythe Dobson, May 09 2018]
From Gus Wiseman, Apr 04 2020: (Start)
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order has no parts greater than two. For example, the terms together with the corresponding compositions begin:
0: () 30: (1,1,1,2) 90: (2,1,2,2)
1: (1) 31: (1,1,1,1,1) 91: (2,1,2,1,1)
2: (2) 42: (2,2,2) 93: (2,1,1,2,1)
3: (1,1) 43: (2,2,1,1) 94: (2,1,1,1,2)
5: (2,1) 45: (2,1,2,1) 95: (2,1,1,1,1,1)
6: (1,2) 46: (2,1,1,2) 106: (1,2,2,2)
7: (1,1,1) 47: (2,1,1,1,1) 107: (1,2,2,1,1)
10: (2,2) 53: (1,2,2,1) 109: (1,2,1,2,1)
11: (2,1,1) 54: (1,2,1,2) 110: (1,2,1,1,2)
13: (1,2,1) 55: (1,2,1,1,1) 111: (1,2,1,1,1,1)
14: (1,1,2) 58: (1,1,2,2) 117: (1,1,2,2,1)
15: (1,1,1,1) 59: (1,1,2,1,1) 118: (1,1,2,1,2)
21: (2,2,1) 61: (1,1,1,2,1) 119: (1,1,2,1,1,1)
22: (2,1,2) 62: (1,1,1,1,2) 122: (1,1,1,2,2)
23: (2,1,1,1) 63: (1,1,1,1,1,1) 123: (1,1,1,2,1,1)
26: (1,2,2) 85: (2,2,2,1) 125: (1,1,1,1,2,1)
27: (1,2,1,1) 86: (2,2,1,2) 126: (1,1,1,1,1,2)
29: (1,1,2,1) 87: (2,2,1,1,1) 127: (1,1,1,1,1,1,1)
(End)
|