The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104326 Dual Zeckendorf representation of n or the maximal (binary) Fibonacci representation. Also list of binary vectors not containing 00. 38
0, 1, 10, 11, 101, 110, 111, 1010, 1011, 1101, 1110, 1111, 10101, 10110, 10111, 11010, 11011, 11101, 11110, 11111, 101010, 101011, 101101, 101110, 101111, 110101, 110110, 110111, 111010, 111011, 111101, 111110, 111111, 1010101 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Whereas the Zeckendorf (binary) rep (A014417) has no consecutive 1's (no two consecutive Fibonacci numbers in a set whose sum is n), the Dual Zeckendorf Representation has no consecutive 0's. Also called the Maximal (Binary) Fibonacci Representation, the Zeckendorf rep. being the Minimal in terms of number of 1's in the binary representation.
Also known as the lazy Fibonacci representation of n. - Glen Whitney, Oct 21 2017
LINKS
J. L. Brown, Jr., A new characterization of the Fibonacci numbers, Fibonacci Quarterly 3, no. 1 (1965) 1-8.
Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, apparently unpublished. See Table 2.
Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
FORMULA
a(n) = A007088(A003754(n+1)).
EXAMPLE
As a sum of Fibonacci numbers (A000045) [using 1 at most once], 13 is 13=8+5=8+3+2.
The largest set here is 8+3+2 or, in base Fibonacci, 10110 so a(13)=10110(fib).
The Zeckendorf representation would be the smallest set or {13}=100000(fib).
MAPLE
dualzeckrep:=proc(n)local i, z; z:=zeckrep(n); i:=1; while i<=nops(z)-2 do if z[i]=1 and z[i+1]=0 and z[i+2]=0 then z[i]:=0; z[i+1]:=1; z[i+2]:=1; if i>3 then i:=i-2 fi else i:=i+1 fi od; if z[1]=0 then z:=subsop(1=NULL, z) fi; z end proc: seq(dualzeckrep(n), n=0..20) ;
MATHEMATICA
fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 34, 0] (* Amiram Eldar, Oct 31 2019 after Robert G. Wilson v at A014417 and the Maple code *)
Map[FromDigits, Select[IntegerString[Range[0, 255], 2], StringFreeQ[#, "00"] &]] (* Paolo Xausa, Apr 05 2024 *)
CROSSREFS
Cf. A007088 (binary vectors), A014417, A095791, A104324.
A003754 gives the numbers corresponding to the binary digit strings seen here.
Sequence in context: A055611 A077813 A203075 * A205598 A350312 A368804
KEYWORD
nonn
AUTHOR
Ron Knott, Mar 01 2005
EXTENSIONS
Index in formula corrected, missing parts of the maple code recovered, and sequence extended by R. J. Mathar, Oct 23 2010
Definition expanded and Duchêne, Fraenkel et al. reference added by N. J. A. Sloane, Aug 07 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)