login
A104324
The Fibonacci word over the nonnegative integers; or, the number of runs of identical bits in the binary Zeckendorf representation of n.
10
0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 4, 5, 2, 3, 4, 4, 5, 4, 5, 6, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6, 7, 6, 7, 8, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6, 7, 6, 7, 8, 4, 5, 6, 6, 7, 6, 7, 8, 6, 7, 8, 8, 9, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6
OFFSET
0,3
COMMENTS
Image of 0 under repeated application of the morphism phi = {2i -> 2i,2i+1; 2i+1 -> 2i+2: i = 0,1,2,3,...}. - N. J. A. Sloane, Jun 30 2017
This sequence has some interesting fractal properties (plot it!).
First occurrence of k=0,1,2,... is at 0,1,2,4,7,12,20,33,54, ..., A000071(k+1): Fibonacci numbers - 1. - Robert G. Wilson v, Apr 25 2006
Read mod 2 gives the Fibonacci word A003849. The differences, halved, give A213911.
REFERENCES
E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..28656 [First 10000 terms from Reinhard Zumkeller]
Amy Glen, Jamie Simpson, and W. F. Smyth, More properties of the Fibonacci word on an infinite alphabet, arXiv:1710.02782 [math.CO], 2017.
Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.
Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), #P2.52.
FORMULA
a(n) = A007895(n) + A213911(n). - Reinhard Zumkeller, Mar 10 2013
EXAMPLE
14 = 13+1 as a sum of Fibonacci numbers = 100001(in Fibonacci base) using the least number of 1's (Zeckendorf Rep): it consists of 3 runs: one 1, four 0's, one 1, so a(14)=3.
This sequence may be broken up into blocks of lengths 1,1,2,3,5,8,... (the nonzero Fibonacci numbers). The first occurrence of a number indicates the start of a new block. The first few blocks are:
0,
1,
2,2,
3,2,3,
4,2,3,4,4,
5,2,3,4,4,5,4,5,
6,2,3,4,4,5,4,5,6,4,5,6,6,
7,2,3,4,4,5,4,5,6,4,5,6,6,7,4,5,6,6,7,6,7,
8,2,3,4,4,5,4,5,6,4,5,6,6,7,4,5,6,6,7,6,7,8,4,5,6,6,7,6,7,8,6,7,8,8,
... (see also A288576). - N. J. A. Sloane, Jun 30 2017
MAPLE
with(combinat, fibonacci):fib:=fibonacci: zeckrep:=proc(N)local i, z, j, n; i:=2; z:=NULL; n:=N; while fib(i)<=n do i:=i+1 od; print(i=fib(i)); for j from i-1 by -1 to 2 do if n>=fib(j) then z:=z, 1; n:=n-fib(j) else z:=z, 0 fi od; [z] end proc: countruns:=proc(s)local i, c, elt; elt:=s[1]; c:=1; for i from 2 to nops(s) do if s[i]<>s[i-1] then c:=c+1 fi od; c end proc: seq(countruns(zeckrep(n)), n=1..100);
MATHEMATICA
f[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; While[ fr[[1]] == 0, fr = Rest@fr]; Length@ Split@ fr]; Array[f, 105] (* Robert G. Wilson v, Apr 25 2006 *)
Nest[ReplaceAll[#, {t_ /; EvenQ[t] :> Sequence[t, t+1], t_ /; OddQ[t] :> t+1}] &, {0}, 10] (* Paolo Xausa, Apr 05 2024 *)
PROG
(Haskell)
import Data.List (group)
a104324 = length . map length . group . a213676_row
-- Reinhard Zumkeller, Mar 10 2013
(PARI) phi(n) = if (n%2, n+1, [n, n+1]);
vphi(v) = nv = []; for (k=1, #v, nv = concat(nv, phi(v[k])); ); nv;
lista(nn) = {v = [0]; for (i=1, nn, v = vphi(v); ); v; } \\ Michel Marcus, Oct 10 2017
CROSSREFS
See also the Fibonacci word A003849.
For partial sums see A288575.
See A288576 for another view of the initial blocks.
Sequence in context: A308355 A336346 A338283 * A193212 A131818 A222111
KEYWORD
nonn,look
AUTHOR
Ron Knott, Mar 01 2005
EXTENSIONS
Entry revised by N. J. A. Sloane, Jun 30 2017
STATUS
approved