login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A004745
Numbers whose binary expansion does not contain 001.
8
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 40, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 104, 106, 107, 108, 109, 110
OFFSET
1,3
LINKS
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
Sum_{n>=2} 1/a(n) = 5.808784664093998434778841785199192904637860758506854276321167162567685504669... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
MATHEMATICA
Select[Range[0, 110], ! StringContainsQ[IntegerString[#, 2], "001"] &] (* Amiram Eldar, Feb 13 2022 *)
Select[Range[0, 120], SequenceCount[IntegerDigits[#, 2], {0, 0, 1}]==0&] (* Harvey P. Dale, Jul 05 2024 *)
PROG
(PARI) is(n)=n=binary(n); for(i=4, #n, if(n[i]&&!n[i-1]&&!n[i-2], return(0))); 1 \\ Charles R Greathouse IV, Mar 29 2013
(PARI) is(n)=while(n>8, if(bitand(n, 7)==1, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
(Haskell)
a004745 n = a004745_list !! (n-1)
a004745_list = filter f [0..] where
f x = x < 4 || x `mod` 8 /= 1 && f (x `div` 2)
-- Reinhard Zumkeller, Jul 01 2013
CROSSREFS
Cf. A007088; A003796 (no 000), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).
Sequence in context: A274375 A364542 A343107 * A158037 A332109 A287519
KEYWORD
nonn,base,easy
STATUS
approved