login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004745
Numbers whose binary expansion does not contain 001.
8
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 40, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 104, 106, 107, 108, 109, 110
OFFSET
1,3
LINKS
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
Sum_{n>=2} 1/a(n) = 5.808784664093998434778841785199192904637860758506854276321167162567685504669... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022
MATHEMATICA
Select[Range[0, 110], ! StringContainsQ[IntegerString[#, 2], "001"] &] (* Amiram Eldar, Feb 13 2022 *)
Select[Range[0, 120], SequenceCount[IntegerDigits[#, 2], {0, 0, 1}]==0&] (* Harvey P. Dale, Jul 05 2024 *)
PROG
(PARI) is(n)=n=binary(n); for(i=4, #n, if(n[i]&&!n[i-1]&&!n[i-2], return(0))); 1 \\ Charles R Greathouse IV, Mar 29 2013
(PARI) is(n)=while(n>8, if(bitand(n, 7)==1, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
(Haskell)
a004745 n = a004745_list !! (n-1)
a004745_list = filter f [0..] where
f x = x < 4 || x `mod` 8 /= 1 && f (x `div` 2)
-- Reinhard Zumkeller, Jul 01 2013
CROSSREFS
Cf. A007088; A003796 (no 000), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).
Sequence in context: A274375 A364542 A343107 * A158037 A332109 A287519
KEYWORD
nonn,base,easy
STATUS
approved