The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003728 E.g.f. log(1+x*cos(x)). (Formerly M4208) 2
 0, 1, -1, -1, 6, -31, 120, -337, -784, 24705, -288000, 2451679, -14032128, -17936543, 2173889536, -42895630065, 583266662400, -5396647099903, 5119183650816, 1239561882325439, -36754121131294720, 708575518706816481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 FORMULA a(0)=0 and for n>=1, a(n)n!*sum(k=1..n-1,((sum(i=0,floor((k-1)/2),(k-2*i)^(n-k)*binomial(k,i)))*(-1)^((n-k)/2)*((-1)^(n-k)+1))/(2^k*(n-k)!)/k*(-1)^(k-1))+(-1)^(n-1)*(n-1)!. - Vladimir Kruchinin, Apr 23 2011 MATHEMATICA With[{nn=30}, CoefficientList[Series[Log[1+Cos[x]x], {x, 0, nn}], x] Range[0, nn]!] (* From Harvey P. Dale, Nov 11 2011 *) PROG (Maxima) a(n) := n! *sum(((sum((k-2*i)^(n-k)*binomial(k, i), i, 0, floor((k-1)/2)))*(-1)^((n-k)/2)*((-1)^(n-k)+1))/(2^k*(n-k)!)/k*(-1)^(k-1), k, 1, n-1)+(-1)^(n-1)*(n-1)!; /* Vladimir Kruchinin, Apr 23 2011 */ CROSSREFS Sequence in context: A351935 A337574 A166786 * A216370 A225425 A267890 Adjacent sequences:  A003725 A003726 A003727 * A003729 A003730 A003731 KEYWORD sign AUTHOR EXTENSIONS Corrected title, Joerg Arndt, Apr 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 27 23:11 EDT 2022. Contains 354903 sequences. (Running on oeis4.)