The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003729 Number of perfect matchings (or domino tilings) in graph C_{5} X P_{2n}. 2
 11, 176, 2911, 48301, 801701, 13307111, 220880176, 3666315811, 60855946601, 1010127453401, 16766766924211, 278305942640176, 4619507031938711, 76677648402694901, 1272746577484955101, 21125893715367851311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154. Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden. LINKS F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. F. Faase, Results from the counting program Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998. Index entries for linear recurrences with constant coefficients, signature (19, -41, 19, -1). FORMULA a(n) = 19a(n-1) - 41a(n-2) + 19a(n-3) - a(n-4), n>4. G.f. x*(11-33*x+18*x^2-x^3)/(1-19*x+41*x^2-19*x^3+x^4) . [From R. J. Mathar, Mar 11 2010] MATHEMATICA Rest[CoefficientList[Series[x (11-33x+18x^2-x^3)/(1-19x+41x^2- 19x^3+ x^4), {x, 0, 20}], x]] (* or *) LinearRecurrence[{19, -41, 19, -1}, {11, 176, 2911, 48301}, 20] (* Harvey P. Dale, Jul 16 2011 *) CROSSREFS Sequence in context: A280442 A218330 A196664 * A230388 A027398 A305970 Adjacent sequences:  A003726 A003727 A003728 * A003730 A003731 A003732 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 07:42 EDT 2022. Contains 356029 sequences. (Running on oeis4.)