login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191509 E.g.f. exp(x*sqrt(1+sin(x)^2)). 2
1, 1, 1, 4, 13, -4, -59, 848, 1625, -57968, -82679, 5307072, 3378277, -761466432, -178851763, 155538255616, 13323839409, -43026868334336, -1145167641071, 15502018794828800, 110592144624061, -7038075176027079680, -12523284027203883, 3925127762389637074944, 1643266949074714633, -2635567108489125092225024 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
a(n)=2*sum(j=1..(n-1)/2, binomial(n,n-2*j)*sum(k=0..j, 4^(j-k)*binomial((n-2*j)/2,k)*sum(i=0..k-1, (i-k)^(2*j)*binomial(2*k,i)*(-1)^(j+k-i))))+1.
If n is odd, then a(n) ~ -sin(Pi*n/2) * 2^(5/4) * log(1+sqrt(2))^(3/2-n) * n^(n-1) / exp(n). If n is even, then limit n->infinity (|a(n)| / (n! * exp(w*cosh(w)) / w^n))^(1/n) = 1, where w = 2*LambertW(sqrt(n/2)). - Vaclav Kotesovec, Aug 05 2014
MATHEMATICA
CoefficientList[Series[E^(x*Sqrt[1+Sin[x]^2]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
PROG
(Maxima)
a(n):=2*sum(binomial(n, n-2*j)*sum(4^(j-k)*binomial((n-2*j)/2, k)*sum((i-k)^(2*j)*binomial(2*k, i)*(-1)^(j+k-i), i, 0, k-1), k, 0, j), j, 1, (n-1)/2)+1;
CROSSREFS
Cf. A003727.
Sequence in context: A130650 A170865 A320030 * A218356 A249120 A170844
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 04 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 06:21 EST 2024. Contains 370240 sequences. (Running on oeis4.)