OFFSET
0,4
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n)=2*sum(j=1..(n-1)/2, binomial(n,n-2*j)*sum(k=0..j, 4^(j-k)*binomial((n-2*j)/2,k)*sum(i=0..k-1, (i-k)^(2*j)*binomial(2*k,i)*(-1)^(j+k-i))))+1.
If n is odd, then a(n) ~ -sin(Pi*n/2) * 2^(5/4) * log(1+sqrt(2))^(3/2-n) * n^(n-1) / exp(n). If n is even, then limit n->infinity (|a(n)| / (n! * exp(w*cosh(w)) / w^n))^(1/n) = 1, where w = 2*LambertW(sqrt(n/2)). - Vaclav Kotesovec, Aug 05 2014
MATHEMATICA
CoefficientList[Series[E^(x*Sqrt[1+Sin[x]^2]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
PROG
(Maxima)
a(n):=2*sum(binomial(n, n-2*j)*sum(4^(j-k)*binomial((n-2*j)/2, k)*sum((i-k)^(2*j)*binomial(2*k, i)*(-1)^(j+k-i), i, 0, k-1), k, 0, j), j, 1, (n-1)/2)+1;
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 04 2011
STATUS
approved