login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218356
Minimal order of degree-n irreducible polynomials over GF(3).
7
1, 4, 13, 5, 11, 7, 1093, 32, 757, 44, 23, 35, 797161, 547, 143, 17, 1871, 19, 1597, 25, 14209, 67, 47, 224, 8951, 398581, 109, 29, 59, 31, 683, 128, 299, 103, 71, 95, 13097927, 2851, 169, 352, 83, 43, 431, 115, 181, 188, 1223, 97, 491, 151, 12853, 53, 107
OFFSET
1,2
COMMENTS
a(n) < 3^n.
For n > 2, a(n) <= A143663(n). For odd prime n, a(n) = A143663(n). - Max Alekseyev, Apr 30 2022
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..796 (first 100 terms from Alois P. Heinz)
FORMULA
a(n) = min(M(n)) with M(n) = {d : d|(3^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A212906(n,1) = A213224(n,2).
MAPLE
M:= proc(n) M(n):= numtheory[divisors](3^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
a:= n-> min(M(n)[]):
seq(a(n), n=1..60);
MATHEMATICA
M[n_] := M[n] = Divisors[3^n - 1]~Complement~U[n - 1];
U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
a[n_] := Min[M[n]];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 27 2012
STATUS
approved