login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218357
Minimal order of degree-n irreducible polynomials over GF(5).
9
1, 3, 31, 13, 11, 7, 19531, 32, 19, 33, 12207031, 91, 305175781, 29, 181, 17, 409, 27, 191, 41, 379, 23, 8971, 224, 101, 5227, 109, 377, 59, 61, 1861, 128, 199, 1227, 211, 37, 149, 573, 79, 241, 2238236249, 43, 1644512641, 89, 209, 47, 177635683940025046467781066894531
OFFSET
1,2
COMMENTS
a(n) < 5^n.
a(n) <= A143665(n). For prime n, a(n) = A143665(n). - Max Alekseyev, Apr 30 2022
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
Eric Weisstein's World of Mathematics, Polynomial Order
FORMULA
a(n) = min(M(n)) with M(n) = {d : d|(5^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A212485(n,1) = A213224(n,3).
MAPLE
with(numtheory):
M:= proc(n) M(n):= divisors(5^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
a:= n-> min(M(n)[]):
seq(a(n), n=1..47);
MATHEMATICA
M[n_] := M[n] = Divisors[5^n - 1] ~Complement~ U[n-1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
a[n_] := Min[M[n]];
Table[a[n], {n, 1, 47}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
CROSSREFS
Sequence in context: A322777 A089281 A212729 * A090543 A215946 A139090
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 27 2012
STATUS
approved