login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A305314
Second member m_2(n) of the Markoff triple MT(n) with largest member m(n) = A002559(n), and smallest member m_1(n) = A305313(n), for n >= 1. These triples are conjectured to be unique.
4
1, 1, 2, 5, 5, 13, 34, 29, 13, 89, 29, 233, 169, 34, 610, 194, 1597, 985, 433, 194, 89, 4181, 169, 10946, 5741, 433, 2897, 1325, 233, 28657, 6466, 1325, 33461, 75025, 7561, 610, 985, 196418, 43261, 9077, 195025, 14701, 514229, 96557, 2897, 51641, 9077, 1597, 37666, 1346269, 7561, 1136689, 14701, 6466, 3524578, 646018, 294685, 135137, 62210, 5741
OFFSET
1,3
COMMENTS
See A305313 for comments, and A002559 for references.
FORMULA
a(n) = m_2(n) is the fundamental proper solution y of the indefinite binary quadratic form x^2 - 3*m(n)*x*y + y^2, of discriminant D(n) = 9*m(n)^2 - 4 = A305312(n), representing -m(n)^2, for n >= 1, with x <= y. The uniqueness conjecture means that there are no other such fundamental solutions.
EXAMPLE
See A305313 for the first Markoff triples MT(n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Jun 25 2018
STATUS
approved