login
A174098
Symmetrical triangle T(n, m) = floor(Eulerian(n+1, m)/2), read by rows.
1
2, 5, 5, 13, 33, 13, 28, 151, 151, 28, 60, 595, 1208, 595, 60, 123, 2146, 7809, 7809, 2146, 123, 251, 7304, 44117, 78095, 44117, 7304, 251, 506, 23920, 227596, 655177, 655177, 227596, 23920, 506, 1018, 76318, 1101744, 4869057, 7862124, 4869057, 1101744, 76318, 1018
OFFSET
2,1
COMMENTS
Row sums are: {2, 10, 59, 358, 2518, 20156, 181439, 1814398, 19958398, 239500796, 3113510398, 43589145596, 653837183996, ...}.
FORMULA
T(n, m) = floor(Eulerian(n+1, m)/2), where Eulerian(n,k) = A008292(n,k).
EXAMPLE
Triangle begins as:
2;
5, 5;
13, 33, 13;
28, 151, 151, 28;
60, 595, 1208, 595, 60;
123, 2146, 7809, 7809, 2146, 123;
251, 7304, 44117, 78095, 44117, 7304, 251;
506, 23920, 227596, 655177, 655177, 227596, 23920, 506;
MATHEMATICA
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
Table[Floor[Eulerian[n+1, m]/2], {n, 2, 12}, {m, 1, n-1}]//Flatten (* G. C. Greubel, Apr 25 2019 *)
PROG
(PARI) {T(n, k) = (sum(j=0, k+1, (-1)^j*binomial(n+2, j)*(k-j+1)^(n+1)))\2};
for(n=2, 12, for(k=1, n-1, print1(T(n, k), ", "))) \\ G. C. Greubel, Apr 25 2019
(Magma) [[Floor((&+[(-1)^j*Binomial(n+2, j)*(k-j+1)^(n+1): j in [0..k+1]] )/2): k in [1..n-1]]: n in [2..12]]; // G. C. Greubel, Apr 25 2019
(Sage) [[floor(sum((-1)^j*binomial(n+2, j)*(k-j+1)^(n+1) for j in (0..k+1))/2) for k in (1..n-1)] for n in (2..12)] # G. C. Greubel, Apr 25 2019
CROSSREFS
Sequence in context: A154692 A309161 A144293 * A183419 A305314 A154694
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 07 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 25 2019
STATUS
approved