login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174095
Triangle T(n,k,q) = Sum_{j=0..10} q^j * floor(A174093(n,k)/2^j) with q=1, read by rows.
4
1, 1, 1, 1, 7, 1, 1, 7, 7, 1, 1, 7, 10, 7, 1, 1, 8, 11, 11, 8, 1, 1, 10, 18, 15, 18, 10, 1, 1, 11, 26, 19, 19, 26, 11, 1, 1, 15, 39, 38, 18, 38, 39, 15, 1, 1, 16, 53, 67, 31, 31, 67, 53, 16, 1, 1, 18, 70, 109, 67, 22, 67, 109, 70, 18, 1
OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 9, 16, 26, 40, 73, 114, 204, 336, 552, ...
FORMULA
T(n, k, q) = Sum_{j=0..10} q^j * floor(A174093(n, k)/2^j), for q = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 7, 7, 1;
1, 7, 10, 7, 1;
1, 8, 11, 11, 8, 1;
1, 10, 18, 15, 18, 10, 1;
1, 11, 26, 19, 19, 26, 11, 1;
1, 15, 39, 38, 18, 38, 39, 15, 1;
1, 16, 53, 67, 31, 31, 67, 53, 16, 1;
1, 18, 70, 109, 67, 22, 67, 109, 70, 18, 1;
MATHEMATICA
A174093[n_, k_]:= If[n<2, 1, Binomial[n-k+1, k] + Binomial[k+1, n-k]];
T[n_, k_, q_]:= Sum[q^j*Floor[A174093[n, k]/2^j], {j, 0, 10}];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 10 2021 *)
PROG
(Sage)
def A174093(n, k): return 1 if n<2 else binomial(n-k+1, k) + binomial(k+1, n-k)
def T(n, k, q): return sum( q^j*(A174093(n, k)//2^j) for j in (0..10) )
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
(Magma)
A174093:= func< n, k | n lt 2 select 1 else Binomial(n-k+1, k) + Binomial(k+1, n-k) >;
T:= func< n, k, q | (&+[ q^j*Floor(A174093(n, k)/2^j): j in [0..10]]) >;
[T(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
CROSSREFS
Cf. A174093 (q=0), this sequence (q=1), A174096 (q=2), A174097 (q=3).
Sequence in context: A377412 A336459 A367764 * A305607 A229779 A050179
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Mar 07 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 10 2021
STATUS
approved