This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174094 Number of ways to choose n positive integers less than or equal to 2n such that none of the n integers divides another. 4
 2, 2, 3, 5, 4, 6, 12, 10, 14, 26, 26, 34, 68, 48, 72, 120, 120, 168, 336, 264, 396, 792, 624, 816, 1632, 1632, 2208, 3616, 3616, 5056, 10112, 6592, 9888, 19776, 19776, 24384, 48768, 48768, 73152, 112320, 76032, 114048, 228096, 190080, 264960, 529920 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) >= 2^(1+floor((n-1)/3)). - Robert Israel, Aug 25 2015 LINKS Marco Pellegrini, Table of n, a(n) for n = 1..100 C. Bindi, L. Bussoli, M. Grazzini, M. Pellegrini, G. Pirillo, M.A. Pirillo, A. Troise, Su un risultato di uno studente di Erdös, Periodico di matematiche 1 (2016), Vol 8, No 1 (2016): Serie XII Anno CXXVI. Hong Liu, Péter Pál Pach, Richárd Palincza, The number of maximum primitive sets of integers, arXiv:1805.06341 [math.CO], 2018. Sujith Vijay, On large primitive subsets of {1,2,...,2n}, arXiv:1804.01740 [math.CO], 2018. EXAMPLE a(1) = 2 because we can choose {1}, {2}. a(2) = 2 because we can choose {2, 3}, {3, 4}. a(3) = 3 because we can choose {2, 3, 5}, {3, 4, 5}, {4, 5, 6}. MAPLE F:= proc(S, m)   option remember;   local s, S1, S2;   if nops(S) < m then return 0 fi;   if m = 1 then return nops(S) fi;   s:= min(S);   S1:= S minus {s};   S2:= S minus {seq(j*s, j=1..floor(max(S)/s))};   F(S1, m) + F(S2, m-1); end proc; seq(F({\$1..2*n}, n), n=1..37); # Robert Israel, Aug 25 2015 MATHEMATICA F[S_List, m_] := F[S, m] = Module[{s, S1, S2}, If[Length[S]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 14:33 EDT 2018. Contains 312776 sequences. (Running on oeis4.)