login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154698
Triangular sequence T(n, m) = (p^(n-m)*q^m + p^m*q^(n-m))*A(n+1, m+1), where A(n, m) = (3*n -3*k +1)A(n-1, k-1) + (3*k-2)A(n-1, k), A(n,1)=A(n,n)=1, p=2 and q=3.
1
2, 5, 5, 13, 96, 13, 35, 1170, 1170, 35, 97, 12948, 39312, 12948, 97, 275, 142170, 986760, 986760, 142170, 275, 793, 1585368, 22077900, 47364480, 22077900, 1585368, 793, 2315, 18009750, 470999340, 1846449000, 1846449000, 470999340, 18009750, 2315
OFFSET
0,1
LINKS
A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2501, (FIG. 3).
EXAMPLE
Triangle begins as:
2;
5, 5;
13, 96, 13;
35, 1170, 1170, 35;
97, 12948, 39312, 12948, 97;
275, 142170, 986760, 986760, 142170, 275;
793, 1585368, 22077900, 47364480, 22077900, 1585368, 793;
MATHEMATICA
p=2; q=3;
A[n_, 1]:= 1; A[n_, n_]:= 1; A[n_, k_]:= (3*n-3*k+1)*A[n-1, k-1] + (3*k-2)*A[n-1, k];
T[n_, m_] := (p^(n-m)*q^m + p^m*q^(n-m)) *A[n+1, m+1];
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)
CROSSREFS
Sequence in context: A305314 A154694 A154696 * A063786 A121304 A002106
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, May 08 2019
STATUS
approved