The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080142 Greedy frac multiples of 1/Pi: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=1/Pi, where "frac(y)" denotes the fractional part of y. 2
 1, 2, 22, 44, 66, 88, 110, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 6390, 6745, 7100, 7455, 7810, 8165, 104348, 104703, 105058, 105413, 105768, 208696, 209051, 312689, 313044, 417037 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The n-th greedy frac multiple of x is the smallest integer that does not cause sum(k=1..n,frac(a(k)*x)) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x. LINKS EXAMPLE a(3) = 22 since frac(1x) + frac(2x) + frac(22x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<22. MAPLE Digits := 1000: a := []: s := 0: x := evalf(1.0/Pi): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a), n]: print(n): s := s+evalf(frac(n*x)): fi: od: a; MATHEMATICA a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, fps = Plus @@ Table[FractionalPart[a[i]*Pi^-1], {i, n - 1}]}, While[fps + FractionalPart[k*Pi^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 40}] (* Robert G. Wilson v, Nov 03 2004 *) CROSSREFS Cf. A079938, A079939, A079940, A079941, etc. Sequence in context: A060108 A221762 A154798 * A306969 A200946 A322157 Adjacent sequences:  A080139 A080140 A080141 * A080143 A080144 A080145 KEYWORD nonn AUTHOR Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 19:53 EST 2020. Contains 331096 sequences. (Running on oeis4.)