|
|
A080139
|
|
Least positive integer multiples of angle x such that their direction cosines form a unit vector: sum(k>0, cos(a(k)*x)^2)=1, where a(1)=1, a(n+1)>a(n) and x=3-Pi/2.
|
|
5
|
|
|
1, 2, 10, 12, 23, 67, 100, 111, 122, 133, 355, 588, 832, 1065, 1298, 1542, 1775, 2485, 3195, 3905, 4615, 16208, 16918, 17628, 18338, 34901, 52174, 69447, 86720, 173795, 191068, 208341, 312689, 329962, 434310, 451583, 573204, 694825, 833719, 955340
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
x=(3-Pi/2)=1.429203673205103... some terms appear in A080138 (for x=3).
|
|
LINKS
|
Table of n, a(n) for n=1..40.
|
|
PROG
|
(PARI) x=(3-Pi/2); z=cos(x)^2; a=1; for(n=1, 50, b=a+1; while(z+cos(b*x)^2>1, b++); z=z+cos(b*x)^2; a=b; print1(b, ", "))
|
|
CROSSREFS
|
Cf. A080136, A080137, A080138, A080140.
Sequence in context: A001363 A022367 A004686 * A055701 A176978 A186630
Adjacent sequences: A080136 A080137 A080138 * A080140 A080141 A080142
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Jan 30 2003
|
|
EXTENSIONS
|
More terms from Paul D. Hanna, Feb 12 2003, using PARI program by Benoit Cloitre.
|
|
STATUS
|
approved
|
|
|
|