This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221762 Numbers m such that 11*m^2 + 5 is a square. 6
 1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778). The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values: k = -10, the nonnegative x values are in A198947; k =  -8,            "                    2*A075839; k =  -7,            "                    A221763; k =  -2,            "                    A075839; k =   1,            "                    A001084; k =   4,            "                    A075844; k =   5,            "                    this sequence; k =   9,            "                    3*A001084. Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ... a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5. a(n+2)/a(n) tends to A176395^2/2. LINKS Bruno Berselli, Table of n, a(n) for n = 1..500 Index entries for linear recurrences with constant coefficients, signature (0,20,0,-1). FORMULA G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4). a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11). a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41. a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n). a(n+1) + a(n-1) =  A198949(n), with a(0)=-1. 2*a(n-1) - a(n) =  A001084(n/2-1) for even n. MAPLE A221762:=proc(q) local n; for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n); fi; od; end: A221762(1000); # Paolo P. Lava, Feb 19 2013 MATHEMATICA LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24] CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *) PROG (Maxima) makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24); (MAGMA) m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4))); (MAGMA) I:=[1, 2, 22, 41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013 CROSSREFS Cf. A001084, A075839, A075844, A198947, A198949, A221763. Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square). Sequence in context: A126913 A019593 A060108 * A154798 A080142 A306969 Adjacent sequences:  A221759 A221760 A221761 * A221763 A221764 A221765 KEYWORD nonn,easy AUTHOR Bruno Berselli, Jan 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)