login
A067046
a(n) = lcm(n, n+1, n+2)/6.
7
1, 2, 10, 10, 35, 28, 84, 60, 165, 110, 286, 182, 455, 280, 680, 408, 969, 570, 1330, 770, 1771, 1012, 2300, 1300, 2925, 1638, 3654, 2030, 4495, 2480, 5456, 2992, 6545, 3570, 7770, 4218, 9139, 4940, 10660, 5740, 12341, 6622, 14190, 7590, 16215, 8648, 18424, 9800
OFFSET
1,2
LINKS
Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3 (Spring 2001), pp. 307-308.
FORMULA
G.f.: (x^4 + 2x^3 + 6x^2 + 2x + 1)/(1 - x^2)^4.
a(n) = binomial(n+2,3)*(3-(-1)^n)/4. - Gary Detlefs, Apr 13 2011
Quasipolynomial: a(n) = n(n+1)(n+2)/6 when n is odd and n(n+1)(n+2)/12 otherwise. - Charles R Greathouse IV, Feb 27 2012
a(n) = A033931(n) / 6. - Reinhard Zumkeller, Jul 04 2012
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*(1 - log(2)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(3*log(2) - 2). (End)
EXAMPLE
a(6) = 28 as lcm(6,7,8)/6 = 168/6 = 28.
MATHEMATICA
Table[LCM[n, n+1, n+2]/6, {n, 50}] (* Harvey P. Dale, Jan 11 2011 *)
PROG
(PARI) { for (n=1, 1000, write("b067046.txt", n, " ", lcm(lcm(n, n+1), n+2)/6) ) } \\ Harry J. Smith, Apr 30 2010
(PARI) a(n)=binomial(n+2, 3)/(2-n%2) \\ Charles R Greathouse IV, Feb 27 2012
(Haskell)
a067046 = (`div` 6) . a033931 -- Reinhard Zumkeller, Jul 04 2012
CROSSREFS
Cf. A000447 (bisection), A006331 (bisection), A033931.
Sequence in context: A212621 A156780 A206486 * A066394 A232500 A351659
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Dec 30 2001
STATUS
approved