login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067049
Triangle T(n,r) = lcm(n,n-1,n-2,...,n-r+1)/lcm(1,2,3,...,r-1,r), 0 <= r < n.
4
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 2, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 10, 5, 1, 1, 1, 7, 21, 35, 35, 7, 7, 1, 1, 8, 28, 28, 70, 14, 14, 2, 1, 1, 9, 36, 84, 42, 42, 42, 6, 3, 1, 1, 10, 45, 60, 210, 42, 42, 6, 3, 1, 1, 1, 11, 55, 165, 330, 462, 462, 66, 33, 11, 11, 1, 1, 12, 66, 110
OFFSET
0,5
REFERENCES
Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 2, 1; ...
MATHEMATICA
t[n_, r_] := LCM @@ Table[n-k+1, {k, 1, r}] / LCM @@ Table[k, {k, 1, r}]; t[_, 0] = 1; Table[t[n, r], {n, 0, 12}, {r, 0, n}] // Flatten (* Jean-François Alcover, Apr 22 2014 *)
PROG
(PARI) t(n, r) = {nt = 1; for (k = n-r+1, n, nt = lcm(nt, k); ); dt = 1; for (k = 1, r, dt = lcm(dt, k); ); return (nt/dt); } \\ Michel Marcus, Sep 14 2013
CROSSREFS
Diagonals give A067046, A067047, A067048. Row sums give A061297.
Sequence in context: A046688 A208342 A157283 * A349976 A090641 A055216
KEYWORD
nonn,tabl
AUTHOR
Amarnath Murthy, Dec 30 2001
EXTENSIONS
More terms from Vladeta Jovovic, Dec 31 2001
STATUS
approved