login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067051
The smallest k>1 such that k divides sigma(k*n) is equal to 3.
10
2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
OFFSET
1,1
COMMENTS
The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.
Appears to be the same sequence as A074629. - Ralf Stephan, Aug 18 2004. [Proof: Mathar link]
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013
LINKS
R. J. Mathar, OEIS A074629
FORMULA
{n: A000203(n) mod 6 = 3.} (Old definition of A074629) - Labos Elemer, Aug 26 2002
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028982. - R. J. Mathar, May 30 2020
MAPLE
select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
MATHEMATICA
Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
PROG
(PARI) isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
(Magma) [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
CROSSREFS
Subsequence of A087943.
Sequence in context: A055044 A356209 A357851 * A074629 A209303 A001105
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jul 26 2002
STATUS
approved