OFFSET
1,1
COMMENTS
The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.
Appears to be the same sequence as A074629. - Ralf Stephan, Aug 18 2004. [Proof: Mathar link]
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
R. J. Mathar, OEIS A074629
FORMULA
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
MAPLE
select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
MATHEMATICA
Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
PROG
(PARI) isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
(Magma) [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jul 26 2002
STATUS
approved