login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The smallest k>1 such that k divides sigma(k*n) is equal to 3.
10

%I #30 Sep 08 2022 08:45:05

%S 2,8,18,32,49,50,72,98,128,162,169,196,200,242,288,338,361,392,441,

%T 450,512,578,648,676,722,784,800,882,961,968,1058,1152,1225,1250,1352,

%U 1369,1444,1458,1521,1568,1682,1764,1800,1849,1922,2048,2178,2312,2450,2592

%N The smallest k>1 such that k divides sigma(k*n) is equal to 3.

%C The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.

%C Appears to be the same sequence as A074629. - _Ralf Stephan_, Aug 18 2004. [Proof: Mathar link]

%C Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - _Michel Marcus_, Dec 26 2013

%H Amiram Eldar, <a href="/A067051/b067051.txt">Table of n, a(n) for n = 1..10000</a>

%H R. J. Mathar, <a href="/A067051/a067051.pdf">OEIS A074629</a>

%F {n: A000203(n) mod 6 = 3.} (Old definition of A074629) - _Labos Elemer_, Aug 26 2002

%F In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - _Robert Israel_, Dec 11 2015

%F {n: A049605(n) = 3}. - _R. J. Mathar_, May 19 2020

%F {n: A084301(n) = 3 }. - _R. J. Mathar_, May 19 2020

%F A087943 INTERSECT A028982. - _R. J. Mathar_, May 30 2020

%p select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # _Robert Israel_, Dec 11 2015

%t Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* _Michael De Vlieger_, Dec 10 2015 *)

%o (PARI) isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ _Michel Marcus_, Dec 26 2013

%o (Magma) [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // _Vincenzo Librandi_, Dec 11 2015

%Y Subsequence of A087943.

%Y Cf. A072862, A074384, A074627, A074628, A074630.

%K easy,nonn

%O 1,1

%A _Benoit Cloitre_, Jul 26 2002