OFFSET
1,1
COMMENTS
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
A000203(n) mod 6 = 3.
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
EXAMPLE
n=32: sigma(32) = 63 = 6*10 + 3.
MAPLE
select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
MATHEMATICA
Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
PROG
(PARI) isok(n) = (sigma(n) % 6) == 3; \\ Michel Marcus, Dec 26 2013
(Magma) [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
CROSSREFS
KEYWORD
dead
AUTHOR
Labos Elemer, Aug 26 2002
STATUS
approved