|
|
A357851
|
|
Numbers k such that the half-alternating sum of the prime indices of k is 1.
|
|
1
|
|
|
2, 8, 18, 32, 45, 50, 72, 98, 105, 128, 162, 180, 200, 231, 242, 275, 288, 338, 392, 420, 429, 450, 455, 512, 578, 648, 663, 720, 722, 800, 833, 882, 924, 935, 968, 969, 1050, 1058, 1100, 1125, 1152, 1235, 1250, 1311, 1352, 1458, 1463, 1568, 1680, 1682, 1716
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
|
|
LINKS
|
|
|
EXAMPLE
|
The terms together with their prime indices begin:
2: {1}
8: {1,1,1}
18: {1,2,2}
32: {1,1,1,1,1}
45: {2,2,3}
50: {1,3,3}
72: {1,1,1,2,2}
98: {1,4,4}
105: {2,3,4}
128: {1,1,1,1,1,1,1}
162: {1,2,2,2,2}
180: {1,1,2,2,3}
200: {1,1,1,3,3}
|
|
MATHEMATICA
|
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]), {i, Length[f]}];
Select[Range[1000], halfats[primeMS[#]]==1&]
|
|
CROSSREFS
|
The version for original alternating sum is A001105.
Partitions with these Heinz numbers are counted by A035444, skew A035544.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|