login
A357850
Numbers whose prime indices do not have weakly decreasing run-sums. Heinz numbers of the partitions counted by A357865.
4
6, 10, 14, 15, 18, 20, 21, 22, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 46, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).
EXAMPLE
The terms together with their prime indices begin:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
42: {1,2,4}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !GreaterEqual@@Total/@Split[primeMS[#]]&]
CROSSREFS
These are the indices of rows in A354584 that are not weakly decreasing.
The complement is A357861, counted by A304406.
These partitions are counted by A357865.
The opposite (not weakly increasing) version is A357876, counted by A357878.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.
Sequence in context: A369256 A068993 A138592 * A085232 A085234 A057714
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 19 2022
STATUS
approved