login
A357848
Heinz numbers of integer partitions whose length is twice their alternating sum.
2
1, 6, 15, 35, 40, 77, 84, 90, 143, 189, 210, 220, 221, 224, 250, 323, 364, 437, 462, 490, 495, 504, 525, 528, 667, 748, 819, 858, 899, 988, 1029, 1040, 1134, 1147, 1155, 1188, 1210, 1320, 1326, 1375, 1400, 1408, 1517, 1564, 1683, 1690, 1763, 1904, 1938, 2021
OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
EXAMPLE
The terms together with their prime indices begin:
1: {}
6: {1,2}
15: {2,3}
35: {3,4}
40: {1,1,1,3}
77: {4,5}
84: {1,1,2,4}
90: {1,2,2,3}
143: {5,6}
189: {2,2,2,4}
210: {1,2,3,4}
220: {1,1,3,5}
221: {6,7}
224: {1,1,1,1,1,4}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}];
Select[Range[1000], Length[primeMS[#]]==2sats[primeMS[#]]&]
CROSSREFS
These partitions are counted by A357709.
The version for compositions is counted by A357847.
A000041 counts partitions, strict A000009.
A003963 multiplies prime indices.
A025047 counts alternating compositions.
A056239 adds up prime indices.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.
A357182 counts compositions w/ length = alternating sum, ranked by A357184.
A357189 counts partitions w/ length = alternating sum, ranked by A357486.
Sequence in context: A338053 A030661 A245630 * A049728 A038666 A075625
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 16 2022
STATUS
approved