The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293296 a(n) = 2*n^2 - floor(n/4). 1
 0, 2, 8, 18, 31, 49, 71, 97, 126, 160, 198, 240, 285, 335, 389, 447, 508, 574, 644, 718, 795, 877, 963, 1053, 1146, 1244, 1346, 1452, 1561, 1675, 1793, 1915, 2040, 2170, 2304, 2442, 2583, 2729, 2879, 3033, 3190, 3352, 3518, 3688, 3861, 4039, 4221, 4407, 4596 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1). FORMULA a(n) = [x^n] (-x*(2+4*x+4*x^2+3*x^3+3*x^4)/((x+1)*(x^2+1)*(x-1)^3)). a(n) = n! [x^n] (3*exp(x)-exp(-x)+14*exp(x)*x+16*exp(x)*x^2-2*cos(x)-2*sin(x))/8. a(n) = a(n-6) - 2*a(n-5) + a(n-4) - a(n-2) + 2*a(n-1) for n >= 6. (-1)^n*(a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n)) = sqrt(n^2 mod 8) = A007877(n). MAPLE a := n -> 2*n^2 - floor(n/4): seq(a(n), n=0..48); MATHEMATICA LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 2, 8, 18, 31, 49}, 49] Table[2n^2-Floor[n/4], {n, 0, 60}] (* Harvey P. Dale, Jan 08 2022 *) PROG (PARI) a(n) = 2*n^2-n\4; \\ Altug Alkan, Oct 08 2017 CROSSREFS Cf. A001105, A007877. Sequence in context: A192157 A268810 A063581 * A055044 A067051 A074629 Adjacent sequences:  A293293 A293294 A293295 * A293297 A293298 A293299 KEYWORD nonn,easy AUTHOR Peter Luschny, Oct 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 02:09 EDT 2022. Contains 353687 sequences. (Running on oeis4.)