This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293295 a(n) = Sum_{k=1..n} (-1)^(n-k)*hypergeom([k, k-2-n], [], 1). 2
 1, 5, 27, 142, 847, 5817, 45733, 405836, 4012701, 43733965, 520794991, 6726601050, 93651619867, 1398047697137, 22275111534537, 377278848390232, 6768744159489913, 128228860181918421, 2557808459478878851, 53585748788874537830, 1176328664895760953831 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = A292898(n, 2). From Vaclav Kotesovec, Jul 05 2018: (Start) Recurrence: (n^2 - 4*n + 5)*a(n) = (n^3 - 3*n^2 + 3*n + 2)*a(n-1) - (n-1)*(2*n - 3)*a(n-2) - (n^3 - 3*n^2 + 2*n + 1)*a(n-3) + (n^2 - 2*n + 2)*a(n-4). a(n) ~ n * n!. a(n) ~ sqrt(2*Pi) * n^(n + 3/2) / exp(n). (End) MAPLE A293295 := n -> add((-1)^(n-k)*hypergeom([k, k-2-n], [], 1), k=1..n): seq(simplify(A293295(n)), n=1..20); MATHEMATICA Table[Sum[(-1)^(n-k)*HypergeometricPFQ[{k, k-2-n}, {}, 1], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 05 2018 *) CROSSREFS Cf. A003470 (n=0), A193464 (n=1), this sequence (n=2), A292898 (n>=0). Sequence in context: A221673 A257061 A052225 * A015535 A026292 A100193 Adjacent sequences:  A293292 A293293 A293294 * A293296 A293297 A293298 KEYWORD nonn AUTHOR Peter Luschny, Oct 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 01:41 EST 2019. Contains 329978 sequences. (Running on oeis4.)