login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293295
a(n) = Sum_{k=1..n} (-1)^(n-k)*hypergeom([k, k-2-n], [], 1).
2
1, 5, 27, 142, 847, 5817, 45733, 405836, 4012701, 43733965, 520794991, 6726601050, 93651619867, 1398047697137, 22275111534537, 377278848390232, 6768744159489913, 128228860181918421, 2557808459478878851, 53585748788874537830, 1176328664895760953831
OFFSET
1,2
FORMULA
a(n) = A292898(n, 2).
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: (n^2 - 4*n + 5)*a(n) = (n^3 - 3*n^2 + 3*n + 2)*a(n-1) - (n-1)*(2*n - 3)*a(n-2) - (n^3 - 3*n^2 + 2*n + 1)*a(n-3) + (n^2 - 2*n + 2)*a(n-4).
a(n) ~ n * n!.
a(n) ~ sqrt(2*Pi) * n^(n + 3/2) / exp(n). (End)
MAPLE
A293295 := n -> add((-1)^(n-k)*hypergeom([k, k-2-n], [], 1), k=1..n):
seq(simplify(A293295(n)), n=1..20);
MATHEMATICA
Table[Sum[(-1)^(n-k)*HypergeometricPFQ[{k, k-2-n}, {}, 1], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)
CROSSREFS
Cf. A003470 (n=0), A193464 (n=1), this sequence (n=2), A292898 (n>=0).
Sequence in context: A221673 A257061 A052225 * A343208 A015535 A026292
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 05 2017
STATUS
approved