login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015535
Expansion of x/(1 - 5*x - 2*x^2).
17
0, 1, 5, 27, 145, 779, 4185, 22483, 120785, 648891, 3486025, 18727907, 100611585, 540513739, 2903791865, 15599986803, 83807517745, 450237562331, 2418802847145, 12994489360387, 69810052496225, 375039241201899, 2014816311001945, 10824160037413523
OFFSET
0,3
COMMENTS
Pisano period lengths: 1, 1, 3, 2, 8, 3, 48, 2, 3, 8, 110, 6, 168, 48, 24, 4, 8, 3, 45, 8, ... - R. J. Mathar, Aug 10 2012
This is the Lucas sequence U(5,-2). - Bruno Berselli, Jan 08 2013
For n > 0, a(n) equals the number of words of length n-1 over {0,1,...,6} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017
FORMULA
a(n) = 5*a(n-1) + 2*a(n-2) with n > 1, a(0)=0, a(1)=1.
MATHEMATICA
LinearRecurrence[{5, 2}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
PROG
(Sage) [lucas_number1(n, 5, -2) for n in range(0, 22)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 5*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-5*x-2*x^2))) \\ G. C. Greubel, Jan 01 2018
CROSSREFS
Cf. A201002 (prime subsequence).
Sequence in context: A052225 A293295 A343208 * A026292 A100193 A158869
KEYWORD
nonn,easy
STATUS
approved