login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100193
a(n) = Sum_{k=0..n} binomial(2n,n+k)*3^k.
3
1, 5, 27, 146, 787, 4230, 22686, 121476, 649731, 3472382, 18546922, 99023292, 528535726, 2820451964, 15048601308, 80283276936, 428271193827, 2284478396334, 12185310873138, 64993897108236, 346655914156602
OFFSET
0,2
COMMENTS
A transform of 3^n under the mapping g(x)->(1/sqrt(1-4x))g(x*c(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. A transform of 4^n under the mapping g(x)->(1/(c(x)*sqrt(1-4x))g(x*c(x)).
Hankel transform is A127357. In general, the Hankel transform of Sum_{k=0..n} C(2n,k)*r^(n-k) is the sequence with g.f. 1/(1-2x+r^2*x^2). - Paul Barry, Jan 11 2007
LINKS
FORMULA
G.f.: (sqrt(1-4x)+1)/(sqrt(1-4x)*(4*sqrt(1-4x)-2)).
G.f.: sqrt(1-4x)*(3*sqrt(1-4x)-8x+3)/((1-4x)(6-32x)).
a(n) = Sum_{k=0..n} binomial(2n, n-k)*3^k.
a(n) = (Sum_{k=0..n} binomial(2n, n-k))*(Sum_{j=0..n} binomial(n, j)*(-1)^(n-j)*4^j).
a(n) = Sum_{k=0..n} C(n+k-1,k)*4^(n-k). - Paul Barry, Sep 28 2007
Conjecture: 9*n*a(n) + 6*(11-18*n)*a(n-1) + 16*(26*n-37)*a(n-2) + 256*(5-2*n)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ (16/3)^n. - Vaclav Kotesovec, Feb 03 2014
a(n) = [x^n] 1/((1 - x)^n*(1 - 4*x)). - Ilya Gutkovskiy, Oct 12 2017
MATHEMATICA
Table[Binomial[2*n, n]*Hypergeometric2F1[1, -n, 1+n, -3], {n, 0, 20}] (* Vaclav Kotesovec, Feb 03 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 08 2004
STATUS
approved