login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100190
The (4,1)-entry in the 4 X 4 matrix M^n, where M = [1,0,0,0 / 3,3,0,0 / 3,6,3,0 / 1,3,3,1].
2
1, 20, 147, 760, 3317, 13164, 49255, 177200, 620073, 2125828, 7174523, 23914920, 78919069, 258280412, 839411151, 2711943520, 8716961105, 27894275316, 88913002339, 282429536600, 894360198981, 2824295364940, 8896530399287, 27960524111760, 87694371077497
OFFSET
1,2
COMMENTS
Suggested by "Mathematical Vistas", p. 178, Fig 14: The Pascal Tetrahedron. The first few levels are (Level 0): 1; (Level 1): 1; 1, 1; (Level 2): 1; 2, 2; 1, 2, 1; (Level 3): 1; 3, 3; 3, 6, 3; 1, 3, 3, 1.
REFERENCES
Peter Hilton, Derek Holton and Jean Pederson; "Mathematical Vistas, From a Room With Many Windows"; Springer, 2000; p. 178.
FORMULA
G.f.: x*(1 + 12*x + 9*x^2)/((1 - 3*x)^2*(1 - x)^2).
a(n) = 8*a(n-1) - 22*a(n-2) + 24*a(n-3) - 9*a(n-4) for n>=5 (derived from the minimal polynomial of the matrix M).
a(n) = ((11 + 3^(2+n))*n - 18*(3^n - 1))/2. - Colin Barker, Feb 28 2017
EXAMPLE
a(6) = 13164 because M^6 = [1,0,0,0 / 1092,729,0,0 / 10938,8748,729,0 / 13164,10938,1092,1].
Alternatively, a(6) = 8*a(5) - 22*a(4) + 24*a(3) - 9*a(2) = 26536 - 16720 + 3528 - 180 = 13164.
MAPLE
with(linalg): M[1]:=matrix(4, 4, [1, 0, 0, 0, 3, 3, 0, 0, 3, 6, 3, 0, 1, 3, 3, 1]): for n from 2 to 27 do M[n]:=multiply(M[1], M[n-1]) od: seq(M[n][4, 1], n=1..27);
a[1]:=1:a[2]:=20:a[3]:=147:a[4]:=760: for n from 5 to 27 do a[n]:=8*a[n-1]-22*a[n-2]+24*a[n-3]-9*a[n-4] od: seq(a[n], n=1..27);
PROG
(PARI) Vec(x*(1+12*x+9*x^2) / ((1-3*x)^2*(1-x)^2) + O(x^30)) \\ Colin Barker, Feb 28 2017
CROSSREFS
Sequence in context: A238021 A183959 A094171 * A189494 A022680 A108647
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Nov 07 2004
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2006
STATUS
approved