login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100192
a(n) = Sum_{k=0..n} binomial(2n,n+k)*2^k.
5
1, 4, 18, 82, 374, 1704, 7752, 35214, 159750, 723880, 3276908, 14821668, 66991436, 302605528, 1366182276, 6165204102, 27811282374, 125415953208, 565408947756, 2548400193852, 11483706241044, 51739037228688, 233070330199296
OFFSET
0,2
COMMENTS
A transform of 2^n under the mapping g(x)->(1/sqrt(1-4x))g(xc(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. A transform of 3^n under the mapping g(x)->(1/(c(x)*sqrt(1-4x))g(x*c(x)).
Hankel transform is A088138(n+1). - Paul Barry, Jan 11 2007
LINKS
FORMULA
G.f.: (sqrt(1-4*x)+1)/(sqrt(1-4*x)*(3*sqrt(1-4*x)-1)).
G.f.: sqrt(1-4*x)*(sqrt(1-4*x)-3*x+1)/((1-4*x)*(2-9*x)).
a(n) = sum{k=0..n, binomial(2n, n-k)2^k}.
a(n) = sum{k=0..n, C(2n,k)*2^(n-k)}; - Paul Barry, Jan 11 2007
a(n) = sum{k=0..n, C(n+k-1,k)3^(n-k)}; - Paul Barry, Sep 28 2007
D-finite with recurrence 2*n*a(n) +(-23*n+16)*a(n-1) +3*(29*n-44)*a(n-2) +54*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (9/2)^n. - Vaclav Kotesovec, Feb 12 2014
a(n) = [x^n] 1/((1 - x)^n*(1 - 3*x)). - Ilya Gutkovskiy, Oct 12 2017
MATHEMATICA
CoefficientList[Series[Sqrt[1-4*x]*(Sqrt[1-4*x]-3*x+1)/((1-4*x)*(2-9*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
CROSSREFS
Cf. A032443.
Sequence in context: A257059 A194460 A356289 * A052913 A279285 A129160
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 08 2004
STATUS
approved