Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 22 2024 08:42:22
%S 1,4,18,82,374,1704,7752,35214,159750,723880,3276908,14821668,
%T 66991436,302605528,1366182276,6165204102,27811282374,125415953208,
%U 565408947756,2548400193852,11483706241044,51739037228688,233070330199296
%N a(n) = Sum_{k=0..n} binomial(2n,n+k)*2^k.
%C A transform of 2^n under the mapping g(x)->(1/sqrt(1-4x))g(xc(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. A transform of 3^n under the mapping g(x)->(1/(c(x)*sqrt(1-4x))g(x*c(x)).
%C Hankel transform is A088138(n+1). - _Paul Barry_, Jan 11 2007
%H Vincenzo Librandi, <a href="/A100192/b100192.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: (sqrt(1-4*x)+1)/(sqrt(1-4*x)*(3*sqrt(1-4*x)-1)).
%F G.f.: sqrt(1-4*x)*(sqrt(1-4*x)-3*x+1)/((1-4*x)*(2-9*x)).
%F a(n) = sum{k=0..n, binomial(2n, n-k)2^k}.
%F a(n) = sum{k=0..n, C(2n,k)*2^(n-k)}; - _Paul Barry_, Jan 11 2007
%F a(n) = sum{k=0..n, C(n+k-1,k)3^(n-k)}; - _Paul Barry_, Sep 28 2007
%F D-finite with recurrence 2*n*a(n) +(-23*n+16)*a(n-1) +3*(29*n-44)*a(n-2) +54*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Nov 24 2012
%F a(n) ~ (9/2)^n. - _Vaclav Kotesovec_, Feb 12 2014
%F a(n) = [x^n] 1/((1 - x)^n*(1 - 3*x)). - _Ilya Gutkovskiy_, Oct 12 2017
%t CoefficientList[Series[Sqrt[1-4*x]*(Sqrt[1-4*x]-3*x+1)/((1-4*x)*(2-9*x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 12 2014 *)
%Y Cf. A032443.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Nov 08 2004