Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 28 2017 10:24:05
%S 1,20,147,760,3317,13164,49255,177200,620073,2125828,7174523,23914920,
%T 78919069,258280412,839411151,2711943520,8716961105,27894275316,
%U 88913002339,282429536600,894360198981,2824295364940,8896530399287,27960524111760,87694371077497
%N The (4,1)-entry in the 4 X 4 matrix M^n, where M = [1,0,0,0 / 3,3,0,0 / 3,6,3,0 / 1,3,3,1].
%C Suggested by "Mathematical Vistas", p. 178, Fig 14: The Pascal Tetrahedron. The first few levels are (Level 0): 1; (Level 1): 1; 1, 1; (Level 2): 1; 2, 2; 1, 2, 1; (Level 3): 1; 3, 3; 3, 6, 3; 1, 3, 3, 1.
%D Peter Hilton, Derek Holton and Jean Pederson; "Mathematical Vistas, From a Room With Many Windows"; Springer, 2000; p. 178.
%H Colin Barker, <a href="/A100190/b100190.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,24,-9).
%F G.f.: x*(1 + 12*x + 9*x^2)/((1 - 3*x)^2*(1 - x)^2).
%F a(n) = 8*a(n-1) - 22*a(n-2) + 24*a(n-3) - 9*a(n-4) for n>=5 (derived from the minimal polynomial of the matrix M).
%F a(n) = ((11 + 3^(2+n))*n - 18*(3^n - 1))/2. - _Colin Barker_, Feb 28 2017
%e a(6) = 13164 because M^6 = [1,0,0,0 / 1092,729,0,0 / 10938,8748,729,0 / 13164,10938,1092,1].
%e Alternatively, a(6) = 8*a(5) - 22*a(4) + 24*a(3) - 9*a(2) = 26536 - 16720 + 3528 - 180 = 13164.
%p with(linalg): M[1]:=matrix(4,4,[1,0,0,0,3,3,0,0,3,6,3,0,1,3,3,1]): for n from 2 to 27 do M[n]:=multiply(M[1],M[n-1]) od: seq(M[n][4,1],n=1..27);
%p a[1]:=1:a[2]:=20:a[3]:=147:a[4]:=760: for n from 5 to 27 do a[n]:=8*a[n-1]-22*a[n-2]+24*a[n-3]-9*a[n-4] od: seq(a[n],n=1..27);
%o (PARI) Vec(x*(1+12*x+9*x^2) / ((1-3*x)^2*(1-x)^2) + O(x^30)) \\ _Colin Barker_, Feb 28 2017
%K nonn,easy
%O 1,2
%A _Gary W. Adamson_, Nov 07 2004
%E Edited by _N. J. A. Sloane_, Dec 04 2006