Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jan 16 2025 21:51:37
%S 1,5,27,146,787,4230,22686,121476,649731,3472382,18546922,99023292,
%T 528535726,2820451964,15048601308,80283276936,428271193827,
%U 2284478396334,12185310873138,64993897108236,346655914156602,1848916875734004,9861224376230628,52594507923308856
%N a(n) = Sum_{k=0..n} binomial(2*n,n+k)*3^k.
%C A transform of 3^n under the mapping g(x)->(1/sqrt(1-4*x))*g(x*c(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. A transform of 4^n under the mapping g(x)->(1/(c(x)*sqrt(1-4*x)))*g(x*c(x)).
%C Hankel transform is A127357. In general, the Hankel transform of Sum_{k=0..n} C(2n,k)*r^(n-k) is the sequence with g.f. 1/(1-2x+r^2*x^2). - _Paul Barry_, Jan 11 2007
%H Seiichi Manyama, <a href="/A100193/b100193.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (sqrt(1-4x)+1)/(sqrt(1-4x)*(4*sqrt(1-4x)-2)).
%F G.f.: sqrt(1-4x)*(3*sqrt(1-4x)-8x+3)/((1-4x)(6-32x)).
%F a(n) = Sum_{k=0..n} binomial(2n, n-k)*3^k.
%F a(n) = (Sum_{k=0..n} binomial(2n, n-k))*(Sum_{j=0..n} binomial(n, j)*(-1)^(n-j)*4^j).
%F a(n) = Sum_{k=0..n} C(n+k-1,k)*4^(n-k). - _Paul Barry_, Sep 28 2007
%F Conjecture: 9*n*a(n) + 6*(11-18*n)*a(n-1) + 16*(26*n-37)*a(n-2) + 256*(5-2*n)*a(n-3) = 0. - _R. J. Mathar_, Nov 09 2012
%F a(n) ~ (16/3)^n. - _Vaclav Kotesovec_, Feb 03 2014
%F a(n) = [x^n] 1/((1 - x)^n*(1 - 4*x)). - _Ilya Gutkovskiy_, Oct 12 2017
%t Table[Binomial[2*n,n]*Hypergeometric2F1[1,-n,1+n,-3],{n,0,20}] (* _Vaclav Kotesovec_, Feb 03 2014 *)
%Y Cf. A032443, A100192, A000108, A127357.
%K easy,nonn,changed
%O 0,2
%A _Paul Barry_, Nov 08 2004