|
|
A063581
|
|
Smallest k such that 4^k has exactly n 6's in its decimal representation.
|
|
2
|
|
|
1, 2, 8, 18, 30, 50, 36, 64, 62, 104, 96, 133, 98, 115, 111, 110, 150, 193, 191, 242, 189, 288, 224, 253, 292, 308, 318, 254, 303, 331, 414, 389, 405, 373, 479, 436, 425, 504, 537, 499, 523, 543, 498, 600, 546, 584, 643, 640, 656, 626, 663
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
|
|
MATHEMATICA
|
a = {}; Do[k = 1; While[ Count[ IntegerDigits[4^k], 6] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
Log[4, #]&/@Table[First[Select[4^Range[900], DigitCount[#, 10, 6]==n&]], {n, 0, 60}] (* Harvey P. Dale, May 15 2011 *)
|
|
CROSSREFS
|
Sequence in context: A065131 A192157 A268810 * A293296 A055044 A067051
Adjacent sequences: A063578 A063579 A063580 * A063582 A063583 A063584
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 10 2001
|
|
EXTENSIONS
|
Name corrected by Jon E. Schoenfield, Jun 26 2018
|
|
STATUS
|
approved
|
|
|
|