login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268810 a(n) = 2*floor(3*n*(n+1)/4). 1
0, 2, 8, 18, 30, 44, 62, 84, 108, 134, 164, 198, 234, 272, 314, 360, 408, 458, 512, 570, 630, 692, 758, 828, 900, 974, 1052, 1134, 1218, 1304, 1394, 1488, 1584, 1682, 1784, 1890, 1998, 2108, 2222, 2340, 2460, 2582, 2708, 2838, 2970, 3104, 3242, 3384, 3528, 3674, 3824, 3978, 4134, 4292 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).

FORMULA

a(n) = (3*n^2 - 3*n + cos(n*Pi/2) + sin(n*Pi/2) - 1)/2.

a(n) = A268428(n) - 149.

a(n) = (1/4+i/4)*((i-1)+(-i)^n-i*i^n-(-3*i+3)*n+(-3*i+3)*n^2), where i is the imaginary unit.

a(n) = (3*n^2 - 3*n + (-1)^binomial(n+1,2) - 1)/2.

G.f.: (2*(x^3 + x^2 + x)/((1 - x)^3*(x^2 + 1))).

MATHEMATICA

Table[2 Floor[3 n (n + 1)/4], {n, 0, 60}]

LinearRecurrence[{3, -4, 4, -3, 1}, {0, 2, 8, 18, 30}, 60]

PROG

(MAGMA) [2*Floor(3*n*(n+1)/4): n in [0..60]]; // Vincenzo Librandi, Feb 15 2016

(PARI) vector(60, n, n--; 2*floor(3*n*(n+1)/4)) \\ G. C. Greubel, Nov 04 2018

CROSSREFS

Cf. A087960, A268428.

Sequence in context: A295522 A065131 A192157 * A063581 A293296 A055044

Adjacent sequences:  A268807 A268808 A268809 * A268811 A268812 A268813

KEYWORD

nonn,easy

AUTHOR

Mikk Heidemaa, Feb 13 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)