OFFSET
1,1
FORMULA
a(n) = Min { k : Sum_{j=1..k} 1/A002808(j) > n }.
Limit_{n->oo} a(n+1)/a(n) = e. - Robert G. Wilson v, Aug 28 2002
EXAMPLE
1/4 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/14 + 1/15 + 1/16 = 1045/1008, but if 1/16 is not present, the sum is less than 1; 16 is the ninth composite number, so a(1) = 9.
MATHEMATICA
NextComposite[n_] := Block[{k = n + 1}, While[PrimeQ[k], k++ ]; k]; s=0; k = 4; Do[While[s = s + 1/k; s < n, k = NextComposite[k]]; Print[k - PrimePi[k] - 1]; k = NextComposite[k], {n, 1, 20}]
Table[Position[Accumulate[1/Select[Range[5*10^6], CompositeQ]], _?(#>n&), 1, 1], {n, 12}]//Flatten (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jan 22 2023 *)
PROG
(PARI) lista(cmax) = {my(n = 1, s = 0, k = 0); forcomposite(c = 1, cmax, k++; s += 1/c; if(s > n, print1(k, ", "); n++)); } \\ Amiram Eldar, Jul 17 2024
CROSSREFS
KEYWORD
nonn,nice,hard,more
AUTHOR
Labos Elemer, Aug 27 2002
EXTENSIONS
Edited by Robert G. Wilson v, Aug 28 2002
More terms from Robert Gerbicz, Aug 30 2002
2 more terms from Robert G. Wilson v, Sep 03 2002
Edited by Jon E. Schoenfield, Sep 13 2023
a(18)-a(20) from Amiram Eldar, Jul 17 2024
STATUS
approved